

Available online at www.sciencedirect.com

The synthesis and complexation study of some coumestan and coumestan analog derivatives of crown ethers using conductometry

Saziye Abdurrahmanoglu^a, Cihan Gündüz^a, Ümit Çakır^b, Baki Çiçek^b, Mustafa Bulut^{a,*}

^aUniversity of Marmara, Department of Chemistry, Kadikoy, 81040, İstanbul, Turkey ^bUniversity of Balikesir, Department of Chemistry, 10100, Balikesir, Turkey

Received 19 May 2004; received in revised form 16 July 2004; accepted 20 July 2004 Available online 25 September 2004

Abstract

8,9-Dihydroxycoumestans, the 8,9-dihydroxy-6*H*-benzofuro[3,2-*c*][1]-benzopyran-6-one, derivatives were prepared from corresponding 4-hydroxy-2*H*-[1]benzopyran-2-one and catechol in oxidizing mixture KIO₃/CH₃COONa/H₂O/acetone while for the oxidative coupling of cyclohexane-1,3-dione and catechol, K₃[Fe(CN)₆]/CH₃COONa/H₂O/acetone was used. The derivatives of 8,9-dihydroxycoumestan and 8,9-dihydroxy-1,4-dimethy-6*H*-benzofuro[3,2-*c*][1]-benzopyran-6-one and two coumestan analog compounds reacted with the bis-dihalides of polyglycols in CH₃CN/Me₂CO₃ to furnish coumestano-12-Crown-4, 15-Crown-5 and 18-Crown-6. The crude products were purified using silica gel chromatography with chloroform. The obtained novel pure crown ethers were identified with IR, ¹H NMR, ¹³C NMR, mass spectroscopy and elemental analysis.

Formation constants for complexation between NaClO₄ and the various coumestano-crown ethers in the solvent acetonitrile at 25 °C were determined from conductance measurements. The method also permits accurate evaluation of association equilibrium constants between the complex species (M—Coumestano-crown ether)⁺ and the anion. The magnitudes of these ion association constants are related to the nature of the solvation of the cation and of the complexed cation. Structures of crown compound—cation complexes in acetonitrile are estimated from the conductance parameters (κ , Λ and α) as well as complex formation constant { $K_e = (\Lambda_{MAm} - \Lambda)/((\Lambda - \Lambda_{MLAm})[L])$ }.

The complexation study indicates 1:1 complex formation between the metal ion and the crown ether. All the experimental studies have been conducted using the ratio 1:1 of the metal ion and the crown ether.

© 2004 Elsevier Ltd. All rights reserved.

Keywords: Coumestano-crown ethers; Synthesis; Complexation; Conductometry

1. Introduction

Since the syntheses of crown ethers by Pedersen [1] and cryptands by Lehn [2], the application of macrocyclic ligand chemistry has taken many directions as

E-mail address: mbulut@marmara.edu.tr (M. Bulut).

shown in the review by Izatt and co-workers [3] which cites close to 1200 references up to early 1990.

The ability of macrocyclic polyethers (crown ethers) to form stable complexes with cations, mainly with alkali and alkaline earth cations, has spurred interest in these compounds [4]. Recently published studies include conductometric measurement of some electrolytes in non-aqueous solvents (tetrahydrofuran [5], tetrahydropyran [5], acetonitrile [6,7] and methanol [7]), in the presence of crown ethers. Studies carried out in

^{*} Corresponding author. Tel.: +90 216 3479641; fax: +90 216 3478783.

solutions of alkali metal salts and crown ethers in acetonitrile and methanol showed decreases in conductivities of the solutions.

The object of the present work is the synthesis of some new coumestan and coumestan analog derivatives of crown ethers containing 4–6 oxygen atoms, 8,9-([1,4, 7,10,13,16]hexaoxacyclopentadecino)-6*H*-benzofuro-[3,2-c][1]-benzopyran-6-one (7c), 1,3-dimethyl-8,9-([1,4,7,10,13,16]hexaoxacyclopentadecino)-6*H*-benzofuro[3,2-*c*]-[1]-benzopyran-6-one (7f), 2,3-dimethyl-8,9-([1,4,7,10, 13]pentaoxacyclopentadecino)-6*H*-benzofuro[3,2-*c*]-[1]-benzopyran-6-one (7g), 1,4-dimethyl-8,9-([1,4,7,10, 13|pentaoxacyclopentadecino)-6*H*-benzofuro[3,2-*c*][1]benzopyran-6-one (7h), 6,7-([1,4,7,10,13]pentaoxacyclododecino)-3,3-dihydro-2*H*-dibenzofuran-1-one (**8b**), 6,7-([1,4,7,10,13,16]hexaoxacyclododecino)-3,3-dihydro-2*H*-dibenzofuran-1-one (8c), 6,7-([1,4,7,10,13,16]hexaoxacyclododecino)-3,3-dimethyl-3,4-dihydro-2H-dibenzofuran-1-one (8f) and a study of their conductance behaviour with Na⁺-perchlorate in acetonitrile at 25 °C together with the structurally analog crown ethers (7a, 7b, 7d, 7e, 8a, 8d) available from our early study [14].

The present work indicates 1:1 complex formation between the sodium ion and electrically neutral coumestan and coumestan analog crown ethers.

2. Experimental

The starting chemicals 2, 3a, 3b were from Fluka or Merck. Initial compounds 1a, 1b, 4a, 4b, 5a, 5b, 7a, 7b, 7d, 7e, 8a, 8d and 8e were available from our earlier study [14]. IR spectra were taken as KBr pellets with a JASCO FT-IR Spectrometer, model 5300. High resolution EI-MS were obtained with Fisons Instrument, model VG-ZABSPEC.

¹H NMR spectra were obtained with a Bruker Spectrometer, model AVANCE-400CPX and TMS were the internal standards. Melting points given are uncorrected. Combustion analyses were acquired with a LECO-932 CHN analyser.

Macrocycles 7a-7h and 8a-8f have been synthesized in our laboratories. Alkali perchlorate (NaClO₄, Merck) was recrystallized thrice with conductivity water. The salt was then heated below its decomposition temperature at reduced pressure. Acetonitrile (Merck; H_2O content less than 0.3%) was of analytical grade quality and was used without further purification.

3. The conductometric study of coumestano-crown ethers with NaClO₄ salt

All solutions were prepared in a dry box and transferred into the dry conductivity cell. All conductances

were measured at 25 ± 0.05 °C. The measuring equipment consisted of a glass vessel (type Ingold) with an external jacket connected to a thermostatted water-bath (25 ± 0.05 °C) and a conductivity cell (Cole Parmer 19050-66 Model) with a conductometer (SUNTEX SC-170 Model).

The cell constant was determined to be 0.769 cm^{-1} at 25 °C by measuring the conductivity of aqueous potassium chloride solutions of different concentrations [15]. A value of the molar conductivity of the pure metal ion solution (Λ_{MA}) was obtained at the appropriate electrolyte concentration before any addition of ligand was made.

4. General procedure for the synthesis of 4-hydroxy-2*H*-[1]benzopyran-2-one (1c, 1d)

In a typical reaction, a mixture of 0.024 mmol of phenol, 0.024 mmol of malonic acid and 0.072 mmol of dry ZnCl₂ in 10 mL phosphorus oxychloride was heated with stirring at 60–65 °C for 35 h, cooled and decomposed with ice and water. The resulting crude product was collected and dissolved in 10% Na₂CO₃, filtered and the solution acidified. The separated coumarin gave, on recrystallization from dilute alcohol, pure 4-hydroxy-2*H*-chromen-2-one.

4.1. 4-Hydroxy-6,7-dimethyl-2H-[1]benzopyran-2-one (1c)

This compound was obtained in 58% yield, mp 248 °C (Lit. 243 °C [16]); IR (KBr): 3280 broad (OH), 1633/1666 shoulder (C=O) and 1595 (Ar-H) cm⁻¹; 1 H NMR (CDCl₃/DMSO- d_6 , 400 Hz): δ 8.63 (4 O-H), 7.15 (s, Ar-H), 7.06 (s, Ar-H), 6.20 (s, 1H, lactone), 2.68 (s, 3H, CH₃) and 2.31 (s, 3H, CH₃).

Anal. Calcd for $C_{11}H_{10}O_3$: C, 69.47; H, 5.26. Found: C, 69.68; H, 5.46.

4.2. 4-Hydroxy-5,8-dimethyl-2H-[1]benzopyran-2-one (1d)

This compound was obtained in 58% yield, mp 258 °C (ethanol) (Lit. 261-262 °C [17]). IR (KBr): 3147/3150 (OH), 1687 (C=O) cm⁻¹; ¹H NMR (CDCl₃/DMSO- d_6 , 400 Hz): δ 7.23–8.83 (q, Ar-H and 4-OH), 6.23 (s, 1H, lactone), 2.67 (s, 3H, CH₃) and 2.20 (s, 3H, CH₃).

Anal. Calcd for $C_{11}H_{10}O_3$: C, 69.47; H, 5.26. Found: C, 69.20; H, 5.16.

5. General procedure for the preparation of compounds 4c and 4d

In a typical reaction, a mixture of **1c** or **1d** and 0.02 mol catechol was stirred in 60 mL acetone/water (1:1) with an oxidizing mixture KIO₃/CH₃COONa at 25 °C in the presence of nitrogen for 60 min. The precipitated product was filtered and washed with hot water. Each of the compounds listed below was recrystallized from ethanol.

5.1. 8,9-Dihydroxy-2,3-dimethyl-6H-benzofuro[3,2-c][1]-benzopyran-6-one (4c)

This compound was obtained in 64% yield, mp 268 °C (ethanol) (Lit. 262 °C [18]). The IR spectrum of **4c** (in KBr) showed absorption bands at 3380 (OH), 1710 (C=O, lactone), 1600–1800 (C=C, furan and aromatic) and 1240 (C–O, stretching) cm⁻¹; ¹H NMR (CDCl₃/DMSO- d_6 , 400 Hz) of **4c** showed singlets at δ 9.52 (2 O–H), 8.2 (Ar-H), two singlets at 7.4 (Ar-H), 2.39 (3H, Ar-CH₃) and 2.38 (3H, Ar-CH₃); ¹³C NMR (CDCl₃): δ 157.8, 157.5, 152.2, 149.7, 146.7, 144.9, 133.2, 133.1, 125.8, 121.0, 114.1, 105.5, 105.2, 99.1, 22.3, 22.

Anal. Calcd for C₁₇H₁₂O₅: C, 68.92; H, 4.05. Found: C, 68.88; H, 3.96.

5.2. 8,9-Dihydroxy-1,4-dimethyl-6H-benzofuro[3,2-c][1]-benzopyran-6-one (4d)

This compound was obtained in 66% yield, mp > 300 °C. The IR spectrum of **4d** (in KBr) showed absorption bands at 3370 (OH), 1680 (C=O, lactone), 1600–1800 (C=C, furan and aromatic) cm⁻¹; ¹H NMR (CDCl₃/DMSO- d_6 , 400 Hz) of **4d** showed doublets at δ 9.50 (2 O-H), 7.4–7.8 (Ar-H), singlets at 7.6, 7.7 (Ar-H), 2.86 (s, 3H, CH₃) and 2.51 (s, 3H, CH₃); ¹³C NMR (CDCl₃): δ 158.1, 157.6, 152.3, 149.6, 147.0, 144.8, 133.3, 133.1, 126.1, 121.0, 105.5, 105.3, 99.2, 22.6, 22.3, 19.68. Anal. Calcd for C₁₇H₁₂O₅: C, 68.92; H, 4.05. Found: C, 68.30; H, 4.08.

6. General procedure for the synthesis of coumestan and coumestan analog derivatives of crown ethers (7a-7h and 8a-8f)

The typical procedure for the cyclisation reaction leading to macrocyclic ethers 7a-7h and 8a-8f is as follows. A mixture of o-dihydroxy compounds 4a-4d and 5a-5b (5 mmol) polyethyleneglycol ditosylate or dichloride (5 mmol) and 10 mmol Me₂CO₃ was dissolved in 120 mL of CH₃CN in a 250 mL reaction flask. The mixture was heated for 35-40 h at 80-85 °C. The solvent was evaporated in vacuo. Diluted HCl was added to the residue and the mixture was extracted with

CHCl₃ (4 \times 30 mL). The combined organic extracts were washed with water, dried over CaCl₂ and evaporated in vacuo. Chromatography of the crude products (Silica gel 60, Fluka) with chloroform gave pure ethers 7a-7h and 8a-8f.

6.1. 8,9-([1,4,7,10,13,16]Hexaoxacyclooctadecino)-6H-benzofuro[3,2-c][1]-benzopyran-6-one (7c)

Compound **4a** (1.48 g, 5 mmol), K_2CO_3 (1.40 g, 10 mmol), CH₃CN (120 mL) and **6c** (2.73 g, 5 mmol) reacted as described above to afford 7c, 0.34 g (14.4%), mp 160 °C (acetonitrile); IR (KBr): 3100 (C-H, arom.), 2890 (CH₂), 2850–2950 (C-H, alkyl), 1749 (lactone), 1618 (C=C), 1278 (C-O, aryl), 1128 (C-H, alkyl) cm⁻¹; ¹H NMR (CDCl₃, 400 Hz): δ 7.90 (d, 1H, Ar-H), 7.68 (s, 1H, Ar-H), 7.44 (m, 1H, Ar-H), 7.34 (m, 2H, Ar-H), 7.23 (s, 1H, Ar-H), 4.4 (t, 2H, OCH₂), 4.30 (t, 2H, OCH₂), 4.22 (t, OCH₂), 3.90 (t, 2H, OCH₂), 3.80 (m, 4H, 2OCH₂), 3.78 (m, 8H, 4OCH₂); ¹³C NMR (CDCl₃): δ 163.0, 160.02, 158.64, 153.6, 151.47, 151.25, 149.88, 131.80, 125.07, 121.86, 117.82, 117.73, 113.23, 112.79, 109.77, 106.53, 101.70, 73.02, 72.61, 72.51, 72.35, 71.73, 71.65, 71.01, 70.20, 69.88; MS: m/z 470 (M⁺), 294 $(M^+ - C_8H_{16}O_4)$, 268, 210, 139; for $C_{25}H_{26}O_9$ HRMAS Calcd 470.1889; Found: 470.1871.

Anal. Calcd for C₂₅H₂₆O₉: C, 63.80; H, 5.53. Found: C, 63.72; H, 5.50.

6.2. 1,3-Dimethyl-8,9-([1,4,7,10,13,16]hexaoxacyclooctadecino)-6H-benzofuro[3,2-c]-[1]-benzopyran-6-one (7f)

Compound **4b** (1.48 g, 5 mmol), K_2CO_3 (1.40 g, 10 mmol), CH_3CN (120 mL) and **6c** (2.73 g, 5 mmol) reacted as described above to afford **7f**, 0.640 g (13%), mp 215 °C (benzene); IR (KBr) 3100 (C–H, arom.), 2950–2960 (C–H, alkyl), 1750 (lactone), 1620 (C=C), 1285 (C–O, aryl), 1080–1140 (O–C, alkyl) cm⁻¹; ¹H NMR (CDCl₃, 400 Hz): δ 4.40 (t, OCH₂), 3.89 (m, 2H, 2OCH₂), 3.81 (m, 8H, 4OCH₂), 3.75 (t, 2H, OCH₂), 3.71 (m, 4H, 2OCH₂), 2.76 (s, 3H, Ar-CH₃), 2.40 (s, 3H, Ar-CH₃); ¹³C NMR (CDCl₃): δ 162.22, 160.35, 155.77, 152.06, 150.94, 149.84, 143.38, 136.05, 128.71, 117.45, 117.10, 111.54, 107.22, 106.25, 99.44, 79.72, 79.08, 78.01, 72.76, 72.70,72.56, 71.53, 71.45, 23.52, 22.93; MS: m/z 498 (M⁺), 322 (M⁺ – $C_8H_{16}O_4$), 296, 225.

Anal. Calcd for $C_{27}H_{30}O_9$: C, 65.06; H, 6.02. Found: C, 65.09; H, 6.08.

6.3. 2,3-Dimethyl-8,9-([1,4,7,10,13]pentaoxacyclopentadecino)-6H-benzofuro[3,2-c][1]-benzopyran-6-one (7**g**)

Compound **4c** (1.48 g, 5 mmol), Na₂CO₃ (1.1 g, 10 mmol), CH₃CN (120 mL) and **6b** (1.15 g, 5 mmol)

reacted as outlined above to obtain **7g**, 0.31 g (13.6%), mp 206–208 °C (acetonitrile); IR (KBr) 3150 (C–H, arom.), 2950–2960 (C–H, alkyl), 1750 (lactone), 1610 (C=C), 1290 (C–O, aryl), 1080–1150 (O–C, alkyl) cm⁻¹; ¹H NMR (CDCl₃, 400 Hz): δ 7.52 (s, 1H, Ar-H), 7.49 (s, 1H, Ar-H), 7.25 (s, 1H, Ar-H), 7.16 (s, 1H, Ar-H), 4.22 (t, 2H, OCH₂), 3.97 (t, 2H, OCH₂), 3.96 (t, 2H, OCH₂), 3.8 (t, 2H, OCH₂), 3.78 (s, 4H, 4 OCH₂), 2.77 (s, 3H, CH₃), 2.36 (s, 3H, CH₃); ¹³C NMR (CDCl₃): δ 161.43, 159.16, 154.32, 153.67, 152.13, 151.46, 150.16, 143.15, 135.25, 134.43, 123.22, 119.84, 118.30, 117.67, 116.63, 99.89, 99.63, 79.58, 79.31, 73.20, 73.14, 72.51, 72.40, 21.84, 21.23; MS: m/z 454 (M⁺), 426 (M⁺ – CO), 322 (M⁺ – C₆H₁₂O₃), 296, 238.

Anal. Calcd for $C_{25}H_{26}O_8$: C, 66.07; H, 5.72. Found: C, 66.22; H, 5.84.

6.4. 1,4-Dimethyl-8,9-([1,4,7,10,13]pentaoxacyclopentadecino)-6H-benzofuro[3,2-c][1]-benzopyran-6-one (7h)

Compound **4d** (1.48 g, 5 mmol), Na₂CO₃ (1.1 g, 10 mmol), CH₃CN (120 mL) and **6b** (1.15 g, 5 mmol) reacted as described above to obtain **7h**, 0.24 g (10.5%), mp 184 °C (acetonitrile); IR (KBr) 3100 (C—H, arom.), 2950–2960 (C—H, alkyl), 1745 (lactone), 1620 (C—C), 1280 (C—O, aryl), 1076–1140 (O—C, alkyl) cm⁻¹; ¹H NMR (CDCl₃, 400 Hz): δ 7.57 (d, 2H, Ar-H), 7.19 (d, 1H, Ar-H), 7.19 (d, 2H, Ar-H), 7.07 (d, 2H, Ar-H), 4.5 (m, 4H, 2OCH₂), 4.2 (m, 4H, 2OCH₂), 3.98 (s, 8H, 4OCH₂), 2.85 (s, 3H, Ar-CH₃), 2.50 (s, 3H, Ar-CH₃); ¹³C NMR (CDCl₃): δ 162.63, 160.40, 157.41, 154.07, 151.38, 150.17, 133.88, 133.78, 128.10, 126.26, 117.67, 114.05, 108.17, 106.71, 99.64, 73.19, 73.13, 72.49, 71.54, 71.46, 23.03, 18.10; MS: m/z 454 (M⁺), 426 (M⁺ – CO), 322 (M⁺ – C₈H₁₆O₄).

Anal. Calcd for $C_{25}H_{26}O_8$: C, 66.08; H, 5.72. Found: C, 65.95; H, 5.76.

6.5. 6,7-([1,4,7,10,13]Pentaoxacyclopentadecino)-3,3-dihydro-2H-dibenzofuran-1-one (**8b**)

Compound **5a** (1.1 g, 5 mmol), the tetraethylenegly-col ditosylate **6b** (2.3 g, 5 mmol) and Na₂CO₃ (1.1 g, 20 mmol) in absolute acetonitrile (120 mL) reacted as described above to afford **8b** 0.13 g (8%), viscous; IR (KBr) 3100 (C—H, aryl), 2850—2995 (C—H, alkyl), 1650 (C=O), 1200—1300 (C—O, aryl) cm⁻¹; ¹H NMR (CDCl₃, 400 Hz): δ 7.06 (s, 1H), 7.58 (s, 1H), 4.16 (m, 8H), 3.82 (m, 4H), 3.78 (s, 4H), 2.52 (t, 2H), 2.4 (t, 2H), 2.23 (p, 2H), 1.17 (s, 6H); ¹³C NMR (CDCl₃): δ 196.81, 172.00, 171.88, 151.21, 151.12, 149.69, 149.21, 131.74, 129.82, 118.54, 118.11, 107.03, 99.36, 72.56, 72.16, 71.59, 71.45, 63.51, 39.69, 25.70, 24.48; MS: m/z 376 (M⁺), 244 (M⁺ – C₆H₁₂O₃), 189, 163.

Anal. Calcd for $C_{20}H_{24}O_7$: C, 63.83; H, 6.41. Found: C, 63.74; H, 6.40.

6.6. 6,7-([1,4,7,10,13,16]-Hexaoxacyclooctadecino)-3,3-dihydro-2Hdibenzofuran-1-one (8c)

Compound **5a** (1.1 g, 5 mmol), the pentaethylenegly-col ditosylate **6c** (2.73 g, 5 mmol) and K_2CO_3 (1.4 g, 10 mmol) in acetonitrile (120 mL) reacted as described above to give **8c**, 0.25 g (12%), mp 104 °C (acetonitrile); IR (KBr) 3100 (C—H, arom.), 2860—3000 (C—H, alkyl), 1650 (C—O), 1200—1300 (C—O, aryl) cm⁻¹; ¹H NMR (CDCl₃, 400 Hz): δ 4.18 (m, 8H), 3.84 (m, 4H), 3.78 (s, 4H), 2.8—3.2 (t, 2H), 2.1—2.8 (t, 2H), 2.4—2.5 (t, 2H); ¹³C NMR (CDCl₃): δ 196.82, 172.01, 171.88, 151.21, 151.12, 149.37, 149.21, 131.74, 129.82, 118.54, 118.11, 107.03, 99.36, 72.56, 72.16, 71.59, 71.45, 71.35, 71.19, 70.58, 63.51, 39.69, 25.70, 24.48; MS: m/z 420 (M⁺), 288 (M⁺ — $C_6H_{12}O_3$), 101, 79.

Anal. Calcd for C₂₂H₂₈O₈: C, 62.85; H, 6.66. Found: C, 63.02; H, 6.68.

6.7. 6,7-([1,4,7,10,13,16]-Hexaoxacyclooctadecino)-3,3-dimethyl-3,4dihydro-2H-dibenzofuran-1-one (**8f**)

Compound **5b** (1.23 g, 5 mmol), the pentaethyleneglycol ditosylate **6c** (2.73 g, 5 mmol) and K_2CO_3 (1.4 g, 10 mmol) in absolute acetonitrile (120 mL) reacted as described above to give **8f**, 0.40 g (18%), mp 96 °C (acetonitrile); IR (KBr) 3100 (C–H, arom.), 2800–2990 (C–H, alkyl), 1650 (C=O), 1200–1300 (C–O, aryl) cm⁻¹; ¹H NMR (CDCl₃, 400 Hz): δ 4.03–4.2 (m, 4H), 3.8–3.9 (m, 4H), 3.65–3.67 (t, 4H), 3.57 (4H), 3.53–3.54 (d, 2H), 2.93 (s, 2H), 2.33 (s, 2H), 1.07 (s, 6H); ¹³C NMR (CDCl₃): δ 196.15, 171.01, 151.64, 149.85, 149.55, 118.32, 117.52, 107.55, 100.05, 73.05, 72.99, 72.83, 72.72, 72.51, 71.78, 71.65, 71.58, 54.21, 39.82, 37.26, 30.64; MS: m/z 448 (M⁺), 316 (M⁺ – C₆H₁₂O₃), 129.

Anal. Calcd for $C_{24}H_{32}O_8$: C, 64.28; H, 7.14. Found: C, 64.18; H, 7.04.

7. Results and discussion

7.1. Organic synthesis

Starting compounds of 4-hydroxy-2*H*-[1]benzopyran-2-one derivatives **1a**—**1d** were prepared from the corresponding phenols that reacted with malonic acid in POCl₃/dry ZnCl₂ mixture.

Coumestan compounds, 6H-benzofurano[3,2-c][1]-benzopyran-6-one, 4a-4d were synthesized from 1a-1d reacting with catechol 2, adopting Wanzlick's

dehydrogenative coupling procedure [8]. Coumestan analog products, 6,7-dihydroxy-3,4-dihydro-2*H*-dibenzofuran-1-one **5a** and 6,7-dihydroxy-3,3-dimethyl-3,4-dihydro-2*H*-dibenzofuran-1-one **5b**, were obtained by reacting catechol **2** with cyclohexane-1,3-dione **3a** and 3,3,-dimethylcyclohexane-1,3-dione **3b** in the presence of K₃[Fe(CN)₆]/CH₃COONa/H₂O/acetone mixture, respectively. The preparation of crown ethers was performed by cyclic condensation of 8,9-dihydroxycoumestan **4a**—**4d** and coumestan analog derivatives **5a**, **5b** with polyethyleneglycol dichloride or polyethyleneglycol ditosylate, in the order named.

Accordingly, 4a condensed with 6a, 6b and 6c to afford the crown ethers 7a, 7b and 7c, respectively. Compound 4b reacted with 6a, 6b and 6c to provide the crown ethers 7d, 7e and 7f, respectively. 4c reacted with **6b** to give the crown ether **7g**. **4d** reacted with **6b** to give the crown ether 7h. 5a reacted with 6a, 6b and 6c to afford the crown ethers 8a, 8b and 8c, respectively. Accordingly **5b** reacted with **6a**, **6b** and **6c** to provide **8d**, 8e and 8f, respectively, in the presence of alkali metal carbonate in CH₃CN (Scheme 1). Chromatography of the residue on silica gel (chloroform) afforded the coumestan-crown ethers 7a-7h 10-14%, the coumestan analog derivatives of crown ethers 8a-8f 8-18%. The characterization of novel crown ethers, given in the experimental part, was made using NMR, IR, TLC, mass spectroscopy and elemental analysis. The 400 MHz ¹H NMR spectra of the benzofuran derivatives of crown ethers 7a-7h and 8a-8f in deuteriochloroform indicate the presence of crown ether moieties (δ 3.78–4.16, multiplets). The integration showed the presence of appropriate number of protons. The aromatic methyl groups (2.76, 2.36, 2.77) at 1,3,4 positions each a singlet represent three hydrogens. The characteristic aromatic signals for each crown ether confirm the structure. The ¹³C NMR spectra show, in addition to aromatic, aromatic methyl and crown ether signals, one resonance for carbonyl carbons. The compounds 7a-7h exhibited in their IR spectra ν C=O \sim 1750 cm⁻¹ which is characteristic of 2-pyrone moiety, while the compounds 8a-8f showed in their IR spectra the appearance of a band at 1650 cm⁻¹ which further corroborated the structure. The spectral data of the known compounds (7a, 7b, 7d, 7e, 8a, 8d) were in accordance with that of literature [14].

7.2. Complexation equilibria in acetonitrile; conductometric measurements

Various methods to calculate the stability constants from measurements of properties involving factors such as molar conductivity etc. have been described in the literatures [9,10].

When a crown compound forms a (M:L) complex with a cation, the equilibrium equation is written as

$$M^{m+}$$
 + L $\rightleftharpoons ML^{m+}$
 αC_{M} $C_{L} - (1 - \alpha)C_{M}$ $(1 - \alpha)C_{M}$ (1)

where M^{m+} , L, and α are the cation, crown compound, and fraction of free cations, respectively. Thus the equilibrium constants, K_e of complex formation, were calculated using Eqs. (2)–(13)

$$K_{e} = \left\lceil ML^{m+} \right\rceil / \left\lceil M^{m+} \right\rceil \left\lceil L \right\rceil \tag{2}$$

$$C_{\rm M}/C_{\rm L} = 1 \tag{3}$$

$$C_{\mathbf{M}} = \left[\mathbf{M}^{m+}\right] + \left[\mathbf{M}\mathbf{L}^{m+}\right] \tag{4}$$

$$C_{\mathcal{L}} = \left[\mathcal{L} \right] + \left[\mathcal{M} \mathcal{L}^{m+} \right] \tag{5}$$

$$\alpha = \left[\mathbf{M}^{m+} \right] / C_{\mathbf{M}} \tag{6}$$

$$P = \lceil \mathbf{M} \mathbf{L}^{m+} \rceil / C_{\mathbf{M}} = K_{\mathbf{e}} \lceil \mathbf{L} \rceil / (1 + K_{\mathbf{e}} \lceil \mathbf{L} \rceil)$$
 (7)

The observed conductivity, κ , is given by

$$\kappa = \kappa_{\rm M}^{m+} + \kappa_{\rm ML}^{m+} \tag{8}$$

The molar conductivities are

$$\Lambda_{\text{MA}m} = \kappa_{\text{MA}}^{m+} / [\mathbf{M}^{m+}] \tag{9}$$

$$A_{\rm ML}^{m+} = \kappa_{\rm ML}^{m+}/[{\rm ML}^{m+}] \tag{10}$$

$$\Lambda = \kappa / C_{\rm M} \tag{11}$$

$$\Lambda = \alpha \Lambda_{\mathbf{M}}^{m+} + (1 - \alpha) \Lambda_{\mathbf{M}}^{m+} \tag{12}$$

As a result of Eq. (12), Eq. (2) can be transformed into

$$K_{\rm e} = (\Lambda_{\rm M}^{m+} - \Lambda) / ((\Lambda - \Lambda_{\rm ML}^{m+})[{\rm L}])$$
 (13)

where

$$[L] = C_L - C_M P$$

and

$$[L] = C_{L} - C_{M} (A_{M}^{m+} - A) / (A_{M}^{m+} - A_{ML}^{m+}).$$

Notations: $C_{\rm M}$ and $C_{\rm L}$ are the total concentrations of alkali metal and crown ether, respectively; $[{\rm M}^{m+}]$, $[{\rm L}]$ and $[{\rm ML}^{m+}]$ are the concentrations of uncomplexed cation, uncomplexed crown ether and complexed cation,

Scheme 1.

respectively; P is the experimental mole fraction of the complexed cation or the ligand [Eqs. (1)–(13)], $\kappa_{\rm M}^{m^+}$, $\kappa_{\rm ML}^{m^+}$ are the observed conductivities of the electrolyte and the crown compound—electrolyte complex, respectively; $\varLambda_{\rm M}^{m^+}$ and $\varLambda_{\rm ML}^{m^+}$ are the designated molar conductivities of the electrolyte and the crown compound—electrolyte complex, respectively.

In the present work, the determination of equilibrium constants, $\log K_e$ of Na⁺ ion with **7a–7h** and **8a–8f**, the only monomeric and electrically neutral crown compounds in acetonitrile, using conductometric measurements at 25 °C for the thermodynamic interpretations of the cation—macrocyclic ether interactions have been studied

Although the ligand—ion exchange rate and role of mother solvent mainly orients the ligand selectivity, the binding power of the ion—dipole interactions primarily depends on the number of oxygen as well as molecular conformations of a macromolecule [11].

The binding power of sodium ion with 7a-7h and 8a-8f coumestano-crown ethers for acetonitrile solution with conductometric studies at 25 °C has been measured. The equilibrium constants and free energies, ΔG^{θ} of crown compound-cation complexes in acetonitrile have been estimated from Eqs. (1)-(13) and given in Table 1. Accordingly, in the acetonitrile-crown ether solutions, ions are most probably structured as axially complexed ion-pairs with a 1:1 ratio of unit one complex [12]. The new determined $\log K_e$ values of NaClO₄ for the coumestano-crown ether compounds in acetonitrile decreased in the order of 7f > 8b > 7b > 7d > 8c> 7e > 8a > 7c > 8d > 7h > 7a > 8f > 8e (7g was precipitated as an unsolvated solid complex). This indicates that complexation occurs between the coumestanocrown ethers and the sodium metal ions, and that the

Table 1 The log K_e and $-\Delta G^{\theta}$ (kcal/mol)

Coumestano-crown ethers	$\log K_{\rm e}$	$-\Delta G^{ heta}$
7a	0.79	1079.04
7b	2.77	3777.43
7c	1.33	1815.70
7d	2.34	3195.00
7e	2.05	2793.07
7f	2.91	3976.92
7g	a	_
7h	0.98	1331.87
8a	1.42	1933.49
8b	2.79	3801.32
8c	2.26	3076.30
8d	1.24	1694.03
8e	0.06	-81.27
8f	0.33	450.18

Values for the interactions of different coumestano-crown ethers with $NaClO_4$ in acetonitrile at 25 °C by a conductometric study. Correlation coefficient: 0.999.

coumestano-crown ether-alkali metal ion complexes are less mobile than the free sodium metal ions. In the previous study [13], it was found that stabilities of the 1:1 complexes of 18C6, 15C5 and 12C4 with NaClO₄ in 85% dioxan-water mixture are 0.80, 0.57 and 0.67, respectively. In this study, results for synthesized 14 coumestano-crown ethers with NaClO₄ in acetonitrile at 25 °C are obtained and compared with previous results for 18C6, 15C5 and 12C4 with the same alkali salt in 85% dioxan-water mixture. And we have previously obtained much smaller $\log K_e$ values [11] for 18C6, 15C5 and 12C4 with NaClO₄ in 85% dioxanwater mixture than in this study (see Table 1). As seen in Table 1, $\log K_e$ values calculated for coumestano derivatives of 18CR6, 15CR5 and 12CR4 series were found to be {2.92, 2.26, 1.33, 0.33}, {2.79, 2.77, 2.05, 0.98, 0.06} and {2.34, 1.42, 1.24, 0.79}, respectively. This indicates that all coumestano-crown ethers form complexes that are less mobile than the corresponding alkali metal ions [9]. Two factors may be responsible for this negligible change in κ inspite of a decrease in different coumestano-crown ether derivatives: (1) ions most probably form ion-pairs, and scarcely any complexation occurs between the crown compounds and the cations; (2) mobilities of a resulting crown compound-cation complex and the corresponding cation are not equal at the same concentra-

The thermodynamic parameter values $(-\Delta G^{\theta})$ of 1:1 complexation reaction between crown ethers and sodium ion in acetonitrile determined by conductometric methods are given in Table 1. The log K_e values determined by conductometry agree with those values determined by other methods [9,11].

It is found that stabilities of complexes of the Na⁺ ions with crown compounds at 25 °C are affected not only by the relative sizes of the cation and the crown ether cavity but also by the different coumestano "side arm" and the influence of acetonitrile solvent.

As a result of this study, it is observed that, for the Na^+ complexes with coumestano-crown ethers in acetonitrile, the $\log K_{\mathrm{e}}$ values are dependent on the chemical characteristics of all ligands and solvents, indicating that the electrostatic ion—dipole forces, that are a function of the macroscopic dielectric constant of the solvent and on the dipole moment of the ligands that depends on the different side arm, are the strongest factors in the complexation processes.

Acknowledgements

The financial support for this work by the Research Foundation of the University of Marmara with

^a Precipitated as an unsolvated solid complex.

1999/Fen-32 and BSE-115/131200 projects is gratefully acknowledged.

References

- [1] Pedersen CJ. J Am Chem Soc 1967;89:2495, 7017.
- [2] Lehn JM. Struct Bonding (Berlin) 1973;16:1. Accounts Chem Res 1978:11:49.
- [3] Izatt RM, Pawlak K, Bradshaw JS. Chem Rev 1991;91:1721.
- [4] (a) Pedersen CJ. J Am Chem Soc 1970;92:391. J Org Chem 1971;36:254. Fedn Proc Fedn Am Soc Exp Biol 1968;27:1305.
 (b) Pedersen CJ, Frensdorff HK. Angew Chem Int Ed Eng 1972; 11:16. (c) Stefanac Z, Simon W. Microchem J 1967;12:125.
 (d) Pioda LAR, Wachter HA, Dohner RE, Simon W. Helv Chim Acta 1967;50:1373.
- [5] Hogen-Esch TE, Smid J. J Phys Chem 1975;79:233.
- [6] Hopkins HP, Norman AB. J Phys Chem 1980;84:309.
- [7] Evans DF, Wellington SL, Nads JA, Cussler EL. J Solution Chem 1972:1:499.
- [8] Grujic Z, Tabakovic I, Trkovnik M. Tetrahedron Lett 1976;52:4823.
- [9] Rossotti FJC, Rossotti H. The determination of stability constants. New York: Mc Graw-Hill; 1961.

- [10] Takeda Y. Conductometric behavior of cation—macrocycle complexes in solutions. In: Inoue Y, Gokel GW, editors. Cation binding by macrocycles. New York: Marcel Dekker; 1991.
- [11] (a) Çakır Ü, Erk Ç. Thermochim Acta 1991;178:67. references cited. (b) Çakır Ü, Erk Ç. Abstracts, Sixth International Symposium on Inclusion Compounds, Tarabya, İstanbul, Turkey; 1994. (c) Çakır Ü, Çiçek B, Erk Ç. Abstracts, Seventh International Symposium on Inclusion Compounds, Lyon, France; 1996. (d) Erk Ç, Çakır Ü, Çiçek B. J Prakt Chem 1999;6:341. (e) Erk Ç, Çakır Ü, Çiçek B. Microchim Acta 1999; 132:79
- [12] Poonia NS, Bajaj AV. Chem Rev 1979;79:389.
- [13] Cicek B, Cakir U, Erk C. Polym Adv Technol 1998;9:831.
- [14] (a) Bulut M, Yilmaz B, Yapıcı M, Kahraman MV. J Inclusion Phenom 1996;26:39. (b) Bulut M, Erk Ç. Molecular recognition and inclusion. In: Coleman AW, editor. 1998. p. 271.
- [15] Lind JE, Zwolnikand JJ, Fuoss RM. J Am Chem Soc 1959;81: 1557.
- [16] Hagiwara Hisahiro, Fujimoto Norikazu, Suzuki Toshio, Ando Masayoshi. Heterocycles 2000;53(3):549.
- [17] Shah Vinold R, Bose Jogendra L, Shah Ramanlal C. Indian 1960; 62:890.
- [18] Simonova LL, Shamshurin AA. Khim Prir Soedin Russ 1970; 6(3):355.